ALTITUDE CORRECTIONS

1

1

ALTITUDE	BARO	METER	SPECIFIC	REL DEN	AIR	CFM	CFM
FEET	MERCURY	ATMOS.	CU FT PER LB	CORR FACT	LBS/CU FT	FACTOR	CORRECT FACTOR
0	29.92	14.7	13.340	1.000	.0750	1.080	1.000
100	29.81	14.64	13.389	.996	.0747	1.076	1.004
200	29.70	14.58	13.439	.993	.0745	1.073	1.007
300	29.60	14.52	13.488	.989	.0742	1.068	1.011
400	29.49	14.40	13.538	.985	.0739	1.064	1.015
500	29.30	14.40	13.567	.901	.0736	1.060	1.019
700	29.20	14.30	13.686	975	.0734	1.057	1.022
800	29.06	14.32	13 735	971	0728	1.033	1.026
900	28.96	14.20	13,785	967	0725	1.044	1.030
1000	28.85	14.20	13.834	.964	.0723	1.041	1.034
1100	28.75	14.14	13.883	.960	.0720	1.037	1.037
1200	28.65	14.08	13.933	.957	.0818	1.034	1.045
1300	28.54	14.02	13.982	.954	.0716	1.031	1.049
1400	28.44	13.96	14.031	.951	.0713	1.027	1.052
1500	28.33	13.90	14.081	.947	.0710	1.022	1.056
1600	28.23	13.86	14.130	.944	.0708	1.020	1.060
1700	28.13	13.82	14.179	.940	.0705	1.015	1.064
1800	28.02	13.78	14.228	.936	.0702	1.011	1.068
1900	27.92	13.74	14.278	.933	.0700	1.008	1.071
2000	27.82	13.70	14.327	.930	.0698	1.005	1.075
2100	27.72	13.64	14.363	.926	.0695	1.001	1.079
2200	27.62	13.58	14.399	.923	.0692	.995	1.083
2300	27.52	13.52	14.435	.920	.0690	.994	1.087
2400	27.41	13.46	14.471	.916	.0687	.989	1.092
2500	27.31	13:40	14.507	.913	.0685	.986	1.096
2600	27.21	13.36	14.543	.909	.0682	.982	1.100
2700	27.11	13.32	14.579	.906	.0680	.979	1.104
2800	27.01	13.28	14.015	.903	.0677	.975	1.108
2900	26.91	13.24	14.651	.900	.0673	.972	1.112
3200	26.61	13.20	14.836	889	0667	960	1.110
3400	26.42	13.00	14.986	883	0662	953	1 1 2 2
3600	26.23	12.90	15,135	.877	.0658	.948	1.155
3800	26.03	12.80	15.285	.870	.0653	.940	1.149
4000	25.84	12.70	15.434	.864	.0648	.933	1.157
4200	25.65	12.60	15.554	.858	.0644	.927	1.166
4400	25.46	12.50	15.674	.851	.0638	.919	1.175
4600	25.27	12.40	15.795	.845	.0634	.913	1.184
4800	25.08	12.30	15.915	.839	.0629	.906	1.193
5000	24.89	12.20	16.035	.832	.0624	.899	1.202
5200	24.71	12.12	16.167	.825	.0619	.891	1.212
5400	24.52	12.04	16.299	.819	.0614	.884	1.222
5600	24.34	11.96	16.431	.813	.0610	.878	1.232
5800	24.16	11.88	16.563	.807	.0605	.871	1.242
6000	23.98	11.80	16.695	.799	.0599	.863	1.252
6200	23.80	11.70	16.803	.794	.0596	.858	1.260
6400	23.62	11.60	16.911	.789	.0592	.852	1.268
6600	23.45	11.50	17.018	.784	.0588	.847	1.276
6800	23.27	11.40	17.126	.779	.0584	.841	1.284
7000	23.09	11.30	17.234	.774	.0581	.835	1.292
7200	22.90	11.22	17.397	.767	.0575	.828	1.304
7400	22.70	11.14	17.560	.760	.0570	.821	1.316
7800	22.51	11.06	17.724	./53	.0565	.814	1.329
8000	22.31	10.98	18 050	./40	.0560	.806	1.341
8200	22.12	10.90	18 171	734	0551	703	1.303
8400	21.82	10.02	18 293	729	0547	788	1 371
8600	21.68	10.66	18 414	.725	.0544	783	1 380
8800	21.53	10.58	18,536	.720	.0540	.778	1 390
9000	21.38	10.50	18.657	.715	.0536	.772	1 399
9200	21.22	10.42	18.809	,709	.0532	.766	1.410
9400	21.06	10.34	18.961	.704	.0528	.760	1.421
9600	20.89	10.26	19.114	.698	.0524	.755	1.433
9800	20.73	10.18	19.265	.693	.0520	.749	1.444
10000	20.57	10.10	19.418	.687	.0515	.742	1.456

 \bigcirc

ALTITUDE CORRECTIONS

1

1

ALTITUDE	BARO	METER	SPECIFIC	REL DEN	AIR	CFM	CFM
FEET	MERCURY	ATMOS.	CU FT PER LB	CORR FACT	LBS/CU FT	FACTOR	CORRECT FACTOR
0	29.92	14.7	13.340	1.000	.0750	1.080	1.000
100	29.81	14.64	13.389	.996	.0747	1.076	1.004
200	29.70	14.58	13.439	.993	.0745	1.073	1.007
300	29.60	14.52	13.488	.989	.0742	1.068	1.011
400	29.49	14.40	13.538	.985	.0739	1.064	1.015
500	29.30	14.40	13.567	.901	.0736	1.060	1.019
700	29.20	14.30	13.686	975	.0734	1.057	1.022
800	29.06	14.32	13 735	971	0728	1.033	1.026
900	28.96	14.20	13,785	967	0725	1.044	1.030
1000	28.85	14.20	13.834	.964	.0723	1.041	1.034
1100	28.75	14.14	13.883	.960	.0720	1.037	1.037
1200	28.65	14.08	13.933	.957	.0818	1.034	1.045
1300	28.54	14.02	13.982	.954	.0716	1.031	1.049
1400	28.44	13.96	14.031	.951	.0713	1.027	1.052
1500	28.33	13.90	14.081	.947	.0710	1.022	1.056
1600	28.23	13.86	14.130	.944	.0708	1.020	1.060
1700	28.13	13.82	14.179	.940	.0705	1.015	1.064
1800	28.02	13.78	14.228	.936	.0702	1.011	1.068
1900	27.92	13.74	14.278	.933	.0700	1.008	1.071
2000	27.82	13.70	14.327	.930	.0698	1.005	1.075
2100	27.72	13.64	14.363	.926	.0695	1.001	1.079
2200	27.62	13.58	14.399	.923	.0692	.995	1.083
2300	27.52	13.52	14.435	.920	.0690	.994	1.087
2400	27.41	13.46	14.471	.916	.0687	.989	1.092
2500	27.31	13:40	14.507	.913	.0685	.986	1.096
2600	27.21	13.36	14.543	.909	.0682	.982	1.100
2700	27.11	13.32	14.579	.906	.0680	.979	1.104
2800	27.01	13.28	14.015	.903	.0677	.975	1.108
2900	26.91	13.24	14.651	.900	.0673	.972	1.112
3200	26.61	13.20	14.836	889	0667	960	1.110
3400	26.42	13.00	14.986	883	0662	953	1 1 2 2
3600	26.23	12.90	15,135	.877	.0658	.948	1.155
3800	26.03	12.80	15.285	.870	.0653	.940	1.149
4000	25.84	12.70	15.434	.864	.0648	.933	1.157
4200	25.65	12.60	15.554	.858	.0644	.927	1.166
4400	25.46	12.50	15.674	.851	.0638	.919	1.175
4600	25.27	12.40	15.795	.845	.0634	.913	1.184
4800	25.08	12.30	15.915	.839	.0629	.906	1.193
5000	24.89	12.20	16.035	.832	.0624	.899	1.202
5200	24.71	12.12	16.167	.825	.0619	.891	1.212
5400	24.52	12.04	16.299	.819	.0614	.884	1.222
5600	24.34	11.96	16.431	.813	.0610	.878	1.232
5800	24.16	11.88	16.563	.807	.0605	.871	1.242
6000	23.98	11.80	16.695	.799	.0599	.863	1.252
6200	23.80	11.70	16.803	.794	.0596	.858	1.260
6400	23.62	11.60	16.911	.789	.0592	.852	1.268
6600	23.45	11.50	17.018	.784	.0588	.847	1.276
6800	23.27	11.40	17.126	.779	.0584	.841	1.284
7000	23.09	11.30	17.234	.774	.0581	.835	1.292
7200	22.90	11.22	17.397	.767	.0575	.828	1.304
7400	22.70	11.14	17.560	.760	.0570	.821	1.316
7800	22.51	11.06	17.724	./53	.0565	.814	1.329
8000	22.31	10.98	18 050	./40	.0560	.806	1.341
8200	22.12	10.90	18 171	734	0551	703	1.303
8400	21.82	10.02	18 293	729	0547	788	1 371
8600	21.68	10.66	18 414	.725	.0544	783	1 380
8800	21.53	10.58	18,536	.720	.0540	.778	1 390
9000	21.38	10.50	18.657	.715	.0536	.772	1 399
9200	21.22	10.42	18.809	,709	.0532	.766	1.410
9400	21.06	10.34	18.961	.704	.0528	.760	1.421
9600	20.89	10.26	19.114	.698	.0524	.755	1.433
9800	20.73	10.18	19.265	.693	.0520	.749	1.444
10000	20.57	10.10	19.418	.687	.0515	.742	1.456

 \bigcirc

ALTITUDE CORRECTIONS

ALTITUDE FEET	INCHES MERCURY	METER LBS/SQ IN ATMOS.	SPECIFIC VOLUME CU FT PER L8	REL DEN SP OR HP CORR FACT	AIR DENSITY LBS/CU FT	CFM TRANS. FACTOR	CFM CORRECT FACTOR
0	29.92	14.7	13.340	1.000	.0750	1.080	1.000
100	29.81	14.64	13.389	.996	.0747	1.076	1.004
200	29.70	14.58	13.439	.993	.0745	1.073	1.007
300	29.60	14.52	13.488	.989	.0742	1.068	1.011
400	29,49	14.46	13.538	.985	.0739	1.064	1.015
600	29.30	14.40	13,536	978	0736	1.057	1.019
700	29.17	14.32	13.686	.975	.0731	1.053	1.022
800	29.06	14.28	13.735	.971	.0728	1.048	1.020
900	28.96	14.24	13.785	.967	.0725	1.044	1.034
1000	28.85	14.20	13.834	.964	.0723	1.041	1.037
1100	28.75	14.14	13.883	.960	.0720	1.037	1.041
1200	28.65	14.08	13.933	.957	.0818	1.034	1.045
1300	28.54	14.02	13.982	.954	.0716	1.031	1.049
1400	28.44	13.96	14.031	.951	.0713	1.027	1.052
1500	28.33	13.90	14.081	.947	.0710	1.022	1.056
1700	28.23	13.80	14.130	.944	0705	1.020	1.060
1800	28.02	13.78	14.228	936	0703	1.013	1.064
1900	27.92	13.74	14.278	.933	.0702	1.008	1.000
2000	27.82	13.70	14.327	.930	.0698	1.005	1.075
2100	27.72	13.64	14.363	.926	.0695	1.001	1.079
2200	27.62	13.58	14.399	.923	.0692	.995	1.083
2300	27.52	13.52	14.435	.920	.0690	.994	1.087
2400	27.41	13.46	14.471	.916	.0687	.989	1.092
2500	27.31	13:40	14.507	.913	.0685	.986	1.096
2600	27.21	13.36	14.543	.909	.0682	.982	1.100
2700	27.11	13.32	14.579	.906	.0680	.979	1.104
2800	27.01	13.20	14.010	903	.0675	.973	1.108
2000	26.91	13.24	14.687	.900	0672	968	1.112
3200	26.61	13.10	14.836	.889	.0667	.960	1.124
3400	26.42	13.00	14.986	.883	.0662	.953	1.133
3600	26.23	12.90	15.135	.877	.0658	.948	1.141
3800	26.03	12.80	15.285	.870	.0653	.940	1.149
4000	25.84	12.70	15.434	.864	.0648	.933	1.157
4200	25.65	12.60	15.554	.858	.0644	.927	1.166
4400	25.46	12.50	15.674	.851	.0638	.919	1.175
4600	25.27	12.40	15.795	.845	.0634	.913	1.184
4800	25.08	12.30	15.915	.839	.0629	.906	1.193
5000	24.89	12.20	16.035	.832	.0624	.899	1,202
5200	24./1	12.12	16.167	.825	,0619	.891	1.212
5400	24.52	12.04	16.299	.819	.0614	.884	1.222
5900	24.34	11.90	16.431	.013	.0610	.876	1.232
6000	23.98	11.80	16.695	799	0599	863	1.242
6200	23.80	11.70	16.803	.794	.0596	.858	1 260
6400	23.62	11.60	16.911	.789	.0592	.852	1.268
6600	23.45	11.50	17.018	.784	.0588	.847	1.276
6800	23.27	11.40	17.126	.779	.0584	.841	1.284
7000	23.09	11.30	17.234	.774	.0581	.835	1.292
7200	22.90	11.22	17.397	.767	.0575	.828	1.304
7400	22.70	11.14	17.560	.760	.0570	.821	1.316
7600	22.51	11.06	17.724	.753	.0565	.814	1.329
7800	22.31	10.98	17.887	.746	.0560	.806	1.341
8000	22,12	10.90	18.050	.739	.0554	./98	1.353
8400	21.97	10.62	10.1/1	724	0547	793	1.302
8600	21.62	10.66	18 414	725	0544	783	1 380
8800	21.53	10.58	18,536	.720	.0540	.778	1 390
9000	21.38	10.50	18.657	.715	.0536	.772	1.399
9200	21.22	10.42	18.809	.709	.0532	.766	1.410
9400	21.06	10.34	18.961	.704	.0528	.760	1.421
9600	20.89	10.26	19.114	.698	.0524	.755	1.433
9800	20.73	10.18	19.265	.693	.0520	.749	1.444
10000	20.57	10.10	19.418	.687	.0515	.742	1.456

43

RRECTIONS

RREC	TIONS		2010 - 10	- Q
REL DEN SP OR HP CORR FACT	AIR DENSITY LBS/CU FT	CFM TRANS. FACTOR	CFM CORRECT FACTOR	
1.000	.0750	1.080	1.000	S
.996	.0747	1.076	1.004	6.2
.993	.0745	1.073	1.007	
.989	.0742	1.068	1.011	Ľ.,
.985	.0739	1.064	1.015	ыć II
.981	.0736	1.060	1.019	1 A -
,978	.0734	1.057	1.022	1.1
.975	.0731	1.053	1.026	
.971	.0728	1.048	1.030	10.0
.967	.0725	1.044	1.034	
.964	.0723	1.041	1.037	i
.960	.0720	1.037	1.041	
.957	.0818	1.034	1.045	
and the second se	and the second			

. . .

-11 10 11

ALTITUDE CO

	BARO	BAROMETER				
ALTITUDE	INCHES MERCURY	LBS/SQ IN ATMOS.	VOLUME CU FT PER LB			
0	29.92	14.7	13.340			
100	29.81	14.64	13.389			
200	29.70	14.58	13.439			
300	29.60	14.52	13.488			
400	29.49	14.46	13.538			
500	29.38	14.40	13.587			
600	29.28	14.36	13.636			
700	29.17	14.32	13,686			
800	29.06	14.28	13.735			
900	28.96	14.24	13.785			
1000	28.85	14.20	13.834			
1100	28.75	14.14	13.883			
1200	28.65	14.08	13.933			
1300	28.54	14.02	13.982			
1400	28.44	13.96	14.031			

Product Data

30GT Packaged Air-Cooled Reciprocating Chillers 50/60 Hz

60 Hz - 15 to 35 Nominal Tons (53 to 123 Nominal kW) 50 Hz - 15 to 30 Nominal Tons (53 to 106 Nominal kW)

Quality Assurance

Approvals: ISO 9002 EN 29002 BS5750 PART 2 ANSI/ASOC Q92

Copyright 1994 Carrier Corporation

Peak Operating Performance in Five Convenient Sizes

- multiple commercial applications
- cost-saving advantages
- smaller, easier to install
- outstanding EERs

Features/Benefits

Small in size, big in installation and operating savings; the ideal unit for exacting commercial requirements

Exceptional efficiency at full and part load

Model 30GT EERs (Energy Efficiency Ratios) are up to 10.4 for full load and 12.0 for part load for significant savings in operating expense. A special heat exchanger tube design creates larger internal surface areas for improved heat transfer, and improves the refrigerant's wetting action on the tube's inner surface.

Improved comfort for occupants

Suction cutoff unloading provides high part load efficiency from threestage operation (2 stages plus hot gas bypass on 020 [60 Hz] and 015 [50 Hz] units), allowing rapid loading and unloading of compressor cylinders to more precisely match the 30GT capacity to changing building load requirements. An extra plus in comfort is in the quiet operation of the Model 30GT. This results from the flared fan orifices, lower condenser airflow, and vibration isolators and mufflers on the compressor, all of which add up to reduced noise and vibration.

Form 30GT-3PD

MINIMUM/MAXIMUM COOLER FLOW **RATES AND RECOMMENDED** MINIMUM LOOP VOLUME

UNIT 30GT	MININ	MUM W	MAXI	WUM	RECOMMENDED MINIMUM LOOP VOLUME		
	Gpm	L/a	Gpm	L/s	G	L	
015	25	2	294	19	45	171	
020	25	2	294	19	60	228	
025	30	2	356	22	75	285	
030	30	2	356	22	90	342	
035	34	2	406	26	105	399	

LEGEND

Air Conditioning and Refrigeration

Institute (U.S.A.)

Liters per kW Gallons per Ton

NOTES:

ARI

Operation below recommended minimum loop volumes will reduce accuracy of loop temperature control. 2. Minimum flow based on 1.5 fps (0.46 m/s) velocity in cooler without

special cooler baffling. 3

APPLICATION	V	N
Normal Air Conditioning	3 to 6	3.25 to 6.5
Process Type Cooling	6 to 10	6.5 to 10.8
Low Ambient Unit Operation	6 to 10	6.5 to 10.8

Water loop volume should range from 3 to 6 gallons per nominal ton of cooling (3.25 to 6.5 liters per kW) for temperature stability and accuracy in normal air conditioning applications. (For example, a 30GT025 would require 75 gallons (285 liters) in circulation in system loop - see Minimum/Maximum Cooler Flow Rates and Minimum Loop Volume table above.) For process jobs where accuracy is vital, there should be from 6 to 10 gallons per ton (6.5 to 10.8 liters per kW). To achieve this volume, it is often necessary to install a tank in the loop. Tank should be baffled to ensure there is no stratification and that water (or brine) entering tank is thoroughly mixed with liquid in tank. Refer to ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers, U.S.A.) guides or similar publication for information on storage tank design.

NOTE: Tank installation is shown below.

Cooler fouling factor used to calculate tabulated ratings was 0.00025 ft² • hr • °F/Btu (0.000044 m² • K/W). As fouling factor is increased, both unit capacity and compressor power decrease. Standard ratings should be corrected using following multipliers:

FOULING FACTOR CORRECTION

FOULIN	G FACTOR		0000000000		
English (ft ² • hr • °F/Btu)	SI (m² ● K/W)	CAPACITY	POWER		
0.00025 0.00075 0.00175	0.000044 0.000132 0.000308	1.00 0.97 0.91	1.00 0.98 0.91		

Condenser altitude correction factors must be applied to standard ratings of altitudes above 2000 ft (610 m) using following multipliers.

ALTITUDE C	ORRECTION	FACTORS
------------	-----------	---------

ALTIT	JDE	CADACITY	COMPRESSOR		
English (ft)	SI (m)	MULTIPLIER	POWER MULTIPLIER		
0	0	1.00	1.00		
2,000	610	0.99	1.01		
4,000	1220	0.98	1.02		
6,000	1830	0.97	1.03		
8,000	2440	0.96	1.04		
10,000	3050	0.95	1.05		

Condenser airflow restrictions will affect the unit capacity condenser head pressure and compressor power input. Correction factors to be applied for external static restrictions up to 0.2 in. wg (50 Pa) are shown below.

AIRFLOW CORRECTION FACTORS

EXTERNAL	STATIC	CADACITY	COMPRESSOR
English (in. wg)	SI (Pa)	MULTIPLIER	POWER MULTIPLIER
0.0	0.0	1.000	1.00
0.1	25.0	0.986	1.01
0.2	50.0	0.968	1.03

Draining the cooler and outdoor piping is recommended if system is not to be used during freezing weather conditions.

In areas that experience subfreezing weather conditions, a suitable brine solution should be added to the system to protect cooler against loss of power.

Use only antifreeze solutions approved for heat exchanger duty. Use of automotive antifreeze is not recommended because of fouling that can occur once their relatively shortlived inhibitor breaks down.

Air-Cooled Liquid Chillers

10 through 60-Tons

CG-DS-1

October 1993 4th Printing March 1995 4

Performance Adjustment Factors (Cont.)

GLYCOL AND PERFORMANCE ADJUSTMENT FACTORS

Table 18-1 — Performance Adjustment Factors (20-60 Ton Units Only)

	Chilled						Alt	itude					
Fouling	Water		Sea Level			2,000 Feet			4,000 Feet		_	6 000 Feet	-
Factor	Δ1	CAP	GPM	KW	CAP	GPM	KW	CAP	GPM	KW	CAP	CDM	MAR
	6	0.987	1.650	0.993	0.967	1.640	1.003	0.952	1.620	1.010	0.000	GFIVI	KVV
0.00005	8	0.993	1.250	0.997	0.973	1.240	1.007	0.956	1 220	1.075	0.932	1.570	1.029
0.00025	10	1.000	1.000	1.000	0.980	0.990	1.010	0.960	0.070	1.020	0.935	1.190	1.035
	12	1.007	0.820	1.003	0.987	0.810	1013	0.000	0.370	1.030	0.940	0.940	1.040
	14	1.013	0.710	1.007	0.993	0,700	1.017	0.000	0.600	1.035	0.945	0.780	1.045
	16	1.020	0.640	1.010	1.000	0.630	1.020	0.972	0.680	1.038	0.952	0.660	1.048
	6	0.957	1.615	0.979	0.953	1 600	0.999	0.000	1.520	1.040	0.960	0.600	1.050
1000	8	0.964	1.215	0.982	0.959	1 210	0.003	0.001	1.570	0.990	0.914	1.540	1.002
0.001	10	0.970	0.965	0.985	0.964	0.960	0.005	0.937	1.180	0.994	0.920	1.170	1.006
	12	0.976	0.785	0.989	0.966	0.300	0.995	0.943	0.940	0.998	0.926	0.920	1.009
	14	0.982	0.675	0.993	0.000	0.750	0.998	0.945	0.770	1.007	0.926	0.760	1.018
	16	0.989	0.620	0.996	0.900	0.670	1.001	0.947	0.650	1.016	0.927	0.640	1.027
	6	0.916	1 565	0.000	0.370	0.600	1.004	0.949	0.590	1.025	0.927	0.580	1.036
	8	0.923	1.000	0.951	0.913	1.550	0.969	0.896	1.490	0.975	0.871	1.450	0.984
0.002	10	0.920	0.025	0.958	0.919	1.170	0.972	0.898	1.110	0.979	0.874	1.080	0.987
	12	0.034	0.925	0.965	0.925	0.920	0.975	0.900	0.890	0.982	0.877	0.880	0.989
	14	0.004	0.010	0.969	0.927	0.750	0.978	0.908	0.730	0.986	0.885	0.720	0.003
	16	0.030	0.695	0.973	0.929	0.640	0.981	0.916	0.620	0.989	0.894	0.610	0.007
-	10	0.540	0.580	0.976	0.931	0.580	0.983	0.924	0.580	0.993	0.902	0.570	1.001

Table 18-2 — Performance Adjustment Factors (10 & 15 Ton Units Only)

	Chilled						Alti	tude				_	_
Fouling	Water		Sea Level			2,000 Feet			4,000 Feet		6 000 Eest		
Factor	Δ1	CAP	GPM	KW	CAP	GPM	KW	CAP	GPM	KW/	CAD	COM	10141
0.00025	6 8 10 12 14	1.00 1.00 1.00 1.00 0.99	1.66 1.25 1.00 0.83 0.71	1.00 1.00 1.00 1.00 1.00	0.98 0.98 0.98 0.98 0.98	1.63 1.22 0.98 0.81 0.59	1.01 1.01 1.01 1.01	0.95 0.96 0.95 0.95	1.59 1.19 0.95 0.79	1.02 1.02 1.02 1.02	0.93 0.93 0.92 0.92	1.54 1.16 0.92 0.77	1.05 1.05 1.04 1.04
0.001	6 8 10 12 14	0.96 0.96 0.96 0.96 0.96	1.60 1.20 0.96 0.80 0.68	0.98 0.98 0.98 0.98 0.98	0.94 0.94 0.94 0.94 0.94	1.57 1.18 0.94 0.79	0.99 0.99 0.99 0.99 0.99	0.92 0.92 0.92 0.92 0.92	1.53 1.15 0.92 0.77	1.02 1.00 1.00 1.00 1.00	0.92 0.90 0.89 0.89 0.89	0.66 1.49 1.12 0.89 0.74	1.04 1.01 1.01 1.01 1.01
0.002	8 10 12 14	0.93 0.90 0.90 0.90	1.15 0.90 0.75 0.64	0.95 0.94 0.94 0.94	0.91 0.89 0.88 0.87	1.13 0.88 0.73 0.63	0.99 0.95 0.95 0.95	0.88 0.87 0.86 0.86	0.65 1.10 0.87 0.72 0.82	1.00 0.98 0.96 0.95	0.89 0.86 0.85 0.84 0.84	0.66 1.07 0.84 0.70	1.01 0.99 0.98 0.98
Standard chil	led water A is	8.12 for CC	A 120 100			0.000		0.00	0.02	0.95	0.84	0.60	0.98

Standard chilled water Δ is 8-12 for CGA 120-180. Standard chilled water Δ is 6-16 for CGAE 20-60.

obtain the BHP at 600° F. If the rating table showed 30.0 BHP, the actual would be 30.0 (530/1060) = 15.0 BHP.

It often happens that a fan, at startup, will handle cold air, and after running for a period will handle hot air. Such might be the case in an oven exhaust system. If **Example 2** were such a case, the fan would require 30.0 BHP when operating at 70° F., and 15.0 BHP when the oven had warmed to 600° F. Very often a damper is furnished with the fan so that, during the warming-up period, the fan can be dampered to reduce the horsepower. Without the damper, a 30 HP motor would be needed. If the warm-up period lasts only a couple of minutes, a motor half-way between hot and cold horsepower requirements could be selected.

Confusion may be avoided by specifying at what temperature the static pressure was calculated. In Example 2, the specifications should read either:

"11,000 CFM and 6"SP at 600^oF." <u>or</u> "11,000 CFM for operation at 600^oF and 12"SP at 70^oF."

Table 1 gives correction factors to use to convert from the density of non-standard temperature air to the density of 70° F. air. These factors are merely the ratios of absolute temperatures. Dividing static pressure and brake horsepower at 70° F. by the factor for a particular temperature will give the static pressure and brake horsepower at that temperature.

Table	1
CORRECTIONS FOR	TEMPERATURE

Air Temp., Deg. F.	Factor	Air Temp., Deg. F.	Factor
-50	0.77	275	1.39
-25	0.82	300	1.43
0	0.87	325	1.48
+20	0.91	350	1.53
40	0.94	375	1.58
60	0.98	400	1.62
70	1.00	450	1.72
80	1.02	500	1.81
100	1.06	550	1.91
120	1.09	600	2.00
140	1.13	650	2.10
160	1.17	700	2.19
180	1.21	750	2.28
200	1.25	800	2.38
225	1.29	900	2.56
250	1.34	1000	2.76

At the end of this article, the factors that determine the best location for the fan in a hot process system are discussed.

How to Calculate Actual Fan Performance at Other Than Sea Level

When a fan operates at some altitude above sea level, it handles air less dense than standard. This is similar to the case of the fan handling high temperature air, since in both cases the air is less dense than standard. Table 2 gives the ratio of standard air density at sea level to densities at 70° F. at other altitudes.

Table 2 CORRECTIONS FOR ALTITUDE

Altitude, Ft. Above Sea Level Factor		Altitude, Ft. Above Sea Level	Factor	
0	1.00	5000	1.20	
500	1.02	5500	1.22	
1000	1.04	6000	1.25	
1500	1.06	6500	1.27	
2000	1.08	7000	1.30	
2500	1.10	7500	1.32	
3000	1.12	8000	1.35	
3500	1.14	8500	1.37	
4000	1.16	9000	1.40	
4500	1.18	10000	1.45	

Example 3. Required: 5800 CFM at 6"SP at 5000 ft. altitude. Air at sea level weighs 1.20 times as much as air at 5000 ft.; therefore, sea level SP = $1.20 \times 6 = 7.20$ "SP. Select a fan for 5800 CFM at 7.20"SP and divide the rating table brake horsepower at 1.20.

Where both heat and altitude are combined, the air is rarified by each, independently, so that the factors that are to be used can be multiplied together.

Example 4. Required: 5800 CFM at 6"SP at 600° F. at 5000 ft. altitude. Air at 70° F. at sea level weighs 2.00 x 1.20 = 2.40 times as much as air at 600° F., 5000 ft. altitude. At sea level and 70° F., SP = 2.40 x 6 = 14.4"SP. Select a fan for 5800 CFM at 14.4"SP. Divide the brake horsepower in the rating table by 2.40 to obtain horsepower at 600° F. and 5000 ft. If the fan is to start cold, it will still be at 5000 ft. altitude. Therefore, to get the "cold" horsepower requirement, divide by 1.20, the altitude factor, only.

Density Changes From Other Than Heat and Altitude

Fan densities may vary from standard for other reasons than heat and altitude. Moisture, gas (other than air) or mixtures of gases are only a few possibilities. In these cases it is necessary to obtain the actual density of the inlet gas by some other reference material. A similar factor, as shown in **Table 1**, is then created as the standard density .075 lb. per cubic inch divided by the new density.

> Factor = .075 special gas density

Elevation

An additional factor that affects the motor's ability to dissipate heat is the density of the surrounding air. With higher air density, more heat can be transferred. Generally the density of air at a specific location is very constant, but air density does vary with elevation; thus, when motors are installed at locations where the elevation is substantially above sea level, consideration must be given to this factor.

Standard motors will operate successfully within their normal temperature rating at elevations up to 1000 meters (3300 ft.) above sea level. When motors are to be operated above this altitude, the motor design should be checked for its suitability at the required elevation. Contact WMC Round Rock for evaluation. When required, motor designs can be modified to make them suitable for high elevation operation.

Altitude (feet)	HP Derating Factor	
3,300-5,000	0.97	
5,001-6,600	0.94	
6,601-8,300	0.90	
8,301-9,900	0.86	
9,901-11,500	0.82	

5.

difference between the highest and When altitude in feet: lowest peak amplitudes of the current pulses over one cycle exceed 10 percent of the highest pulse amplitude at rated armature current.

- e. Low noise levels are required.
- 3. Operation at speeds above the highest rated speed.
- Operation in a poorly ventilated room, in a 4. pit, or in an inclined position.
 - Operation where subjected to:
 - Torsional impact loads. a.
 - Repetitive abnormal overloads. b.
 - Reversing or electric braking.
- 6. Operation of machine at standstill with any winding continuously energized or of shorttime rated machine with any winding continuously energized.
- 7. Operation of direct-current machine where the average armature current is less than 50 percent of the rated full-load amperes over a 24-hour period, or continuous operation at armature current less than 50 percent of rated current for more than 4 hours.

Authorized Engineering Information 10-27-1926, revised 11-11-1965; 11-16-1967; 7-15-1970; 1-25-1972; 11-8-1973; 3-14-1979.

MG 1-14.04 Operation at Altitudes Above 3300 Feet (1000 Meters)

The temperature rises given for motors and generators in MG 1-12.41, MG 1-12.42, MG 1-12.62 and MG 1-15.41 are based upon operation at altitudes of 3300 feet (1000 meters) or less and a maximum ambient temperature of 40 °C. It is also recognized as good practice to use motors and generators at altitudes greater than 3300 feet (1000 meters) as indicated in the following paragraphs:

A. Motors and generators having Class A or B insulation systems and temperature rises in accordance with MG 1-12.41, MG 1-12.42, MG 1-12.62 and MG 1-15.41 will operate satisfactorily at alti-tudes above 3300 feet (1000 meters) in those locations where the decrease in ambient temperature compensates for the increase in temperature rise, as follows:

Ambient Temperature, Degrees C	Maximum Altitude, Feet (Meters)
40	3300 (1000)
30	6600 (2000)
20	9900 (3000)

B. Motors having a service factor of 1.15 or higher will operate satisfactorily at unity service factor at an ambient temperature of 40 °C at altitudes above 3300 feet (1000 meters) up to 9000 feet (2740 meters).

C. Motors and generators which are intended for use at altitudes above 3300 feet (1000 meters) at an ambient temperature of 40 °C should have temperature rises at sea level not exceeding the values calculated from the following formula:

$$T_{RSL} = T_{RA} \left[1 - \frac{(Alt - 3300)}{33000} \right]$$

or

When altitude in meters:

$$T_{RSL} = T_{RA} \left[1 - \frac{(Alt - 1000)}{10000} \right]$$

where:

- $T_{RSL} =$ test temperature rise in degrees C at sea level.
- TRA temperature rise in degrees C from the = appropriate table in MG 1-12.41, MG 1-12.42, MG 1-12.62 or MG 1-15.41.
- Alt = altitude above sea level in feet (meters) at which machine is to be operated.

D. Preferred values of altitude are 3300 feet (1000 meters), 6600 feet (2000 meters), 9900 feet (3000 meters), 13200 feet (4000 meters) and 16500 feet (5000 meters).

Authorized Engineering Information 11-12-1964.

MG 1-14.05 Short-time Rated Electrical Machines

Short-time rated electrical machines (see MG 1-10.35 and MG 1-10.63) should be applied so as to insure performance without injury. They should not be used (except on the recommendation of the manufacturer) on any application where the driven machine may be left running continuously. NEMA Standard 10-29-1937.

MG 1-14.06 Direction of Rotation

Facing the end of the machine opposite the drive, the standard direction of rotation for all nonreversing direct-current motors, all alternating-current single-phase motors, all synchronous motors and all universal motors shall be counterclockwise. For alternating- and direct-current generators, the rotation shall be clockwise. Where two or more machines are mechanically coupled together, this standard may not apply to all units. NEMA Standard 1-26-1934.

NOTE—This does not apply to polyphase induction motors as most applications on which they are used are of such a nature that either or both directions of rotation may be required, and the phase se-quence of the power lines is rarely known.

Authorized Engineering Information 1-26-1934.

NET POSITIVE SUCTION HEAD

(NPSH)

NPSH combines all of the factors limiting the suction side of a pump; internal pump losses, static suction lift, friction losses, vapor pressure and atmospheric conditions. It is important to differentiate between Required NPSH and Available NPSH.

Required NPSH - this refers to internal pump losses and is determined by laboratory test. It varies with each pump and with each pump capacity and speed change. The greater the capacity, the greater the required NPSH. Required NPSH must always be given by the pump manufacturer.

Available NPSH - this is a characteristic of the system. It can be calculated, or on an existing installation, it can be determined by field test using vacuum and pressure gauges. By definition, it is the net positive suction head above the vapor pressure available at the suction flange of the pump to maintain a liquid state. Since there are also internal pump losses (required NPSH) the available NPSH in a system must exceed the pump required NPSH -- otherwise, reduction in capacity, loss of efficiency, noise, vibration and cavitation will result.

NPSH FORMULAS

PROPOSED INSTALLATION

To calculate the N. P. S. H. available in a proposed application, the following formula is recommended:

 $Hsv = Hp \pm Hz - Hf - Hvp$

- Hsv = Available N. P. S. H. expressed in feet of fluid.
- Hp = Absolute pressure on the surface of the liquid where the pump takes suction, expressed in "feet". This could be atmospheric pressure or vessel pressure (pressurized tank).
- Hz = Static elevation of the liquid above, or below the centerline of the impeller, expressed in feet.
- Hf = Friction and velocity head loss in the piping, also expressed in feet.
- Hvp Absolute vapor pressure of the fluid at the pumping temperature, expressed in feet of fluid.

and to overcome the pump internal pressure losses is the *required NPSH* of the pump.

The required NPSH of a pump is part of the standard design performance data furnished by the manufacturer or of a design specific to a given process pump.

The net positive suction head (pressure in feet of liquid) of the process liquid system as it exists within the system complex at the entering (suction) side of the pump is called the *available NPSH*. It must be at least equal to or greater than the required NPSH in order to produce a flow thru a pump. A safety factor should be considered to cover a possible excess of required NPSH.

The available NPSH is the algebraic sum determined by the formula:

Available NPSH =
$$\frac{2.31 (P_a - P_{vp})}{\text{sp gr}} + H_s - H_f$$

where:

NPSH = net positive suction head (absolute pressure, ft)

- 2.31 = conversion factor to change one pound pressure at a specific gravity of 1.0 to pressure head in feet of water (1 inch Hg = 1.134 ft of water).
- P_a = atmospheric pressure (absolute pressure, psia) in an open system; or pressure (absolute, psia) within a totally closed system.
- P_{rp} = vapor pressure (psia) of the fluid at pumping temperature; in a totally closed system it is part of the total pressure P_a .
- H, = elevation head, static head (ft) above or below the pump center line. If above, positive static head; if below, negative static head, sometimes termed suction lift.*
- H₁ = friction head (ft) on the suction side of the system including piping, fittings, valves, heat exchangers at the design velocity (V, in ft per sec) within suction system.
- sp gr = specific gravity of liquid handled at operating temperature (Fig. 14).

Figures 11 and 12 illustrate the application of the calculation of available NPSH to the variety of open and closed circuits. Three additional terms are introduced in these figures:

- $H_{vp} =$ vapor pressure (ft) of the fluid at pumping temperature.
- H_{ϵ} = entrance head (ft), suction pipe entrance loss in open systems.
- $H_{\mathbf{r}_{se}} = \text{pump suction eye velocity head (ft), } (V_{se})^2/2g.$ This term is usually very small as shown in the following tabulation:

Velocity (ft/sec)	3	4	5	6	7
Velocity head (ft)	.14	.25	.39	.56	.76
Velocity (ft/sec)	8	9	10	11	12
Velocity head (ft)	.99	1.26	1.55	1.88	2.23

FIG. 13 – EFFECT OF ALTITUDE ON ATMOSPHERIC Pressure

A pressure selected to be maintained above atmospheric pressure in the top circuit of a closed piping system determines the design $H_{(expansion tanks)}$ pressure (Fig. 12).

On examining Fig. 11 and 12, it is evident that the available NPSH may vary, especially with critical fluids. The variables that may be either fixed or adjusted are:

- 1. Altitude of the system location above or below sea level; Fig. 13 shows the change of atmospheric pressure (feet of cold water) with the altitude. The greater the altitude, the lower is the available atmospheric pressure (P_a in psia or H_a in ft) which influences an open system. The totally closed system pressure P_a may be regulated.
- 2. Vapor pressure of the liquid (Fig. 14) pumped at operating temperature P_{vp} (psia) or H_{vp} (ft); Figure 14 shows the vapor pressure of water at various temperatures. This pressure may or may not be adjusted.
- Friction losses of the pump suction piping system; the larger the pipe, the less are the friction losses H₁ (ft) for a given fluid flow.
- *It must be remembered that a pump does not lift the liquid it moves; a pump must have pressure to produce the flow.

High altitude effects on the performance of equipment involving water evaporation

ROBERT JORGENSEN Member ASHRAE

There are many types of heating, refrigerating, and airconditioning equipment which utilize the psychrometric process of evaporating water into air. These equipment types may be classified in two groups according to whether the main function is to: (1) increase the amount of water vapor in the air, or (2) remove heat from the water. Among the former are various types of humidifiers, air washers, and evaporative air coolers as listed in Chapter 38 of the Guide And Data Book.1 Among the latter are various types of cooling towers and spray ponds as listed in Chapter 37 of the Guide And Data Book,1 plus evaporative condensers as described in Chapter 32 of the Guide And Data Book1 and air washers which may be considered a special form of cooling tower.

The purpose of this paper, like that of all the other papers presented at this Symposium, is to examine the methods of accounting for altitude effect which are in use. Hopefully, this will stimulate interest in improving on these methods and establishing standards. In order

Robert Jorgensen is Chief Engineer, Air Handling Div, Buffalo Forge Co., Buffalo, N.Y.

to keep this paper from becoming too long, only two types of equipment will be examined, one for each of the above categories. Perhaps as a result of this small start, studies covering all types will be made in the near future.

AIR WASHERS FOR HUMIDIFYING DUTY

This Task Group was not able to find any published data giving the effect of altitude on the performance of air washers for humidifying duty. An analytical study was, therefore, made.

The Guide And Data Book¹ defines the humidifying effectiveness of a recirculated spray air washer as follows:

-, where tr — ť

 $\eta =$ humidifying efficiency or effectiveness, t₁ = entering dry-bulb temperature, t₁ = leaving dry-bulb temperature, and

t' = entering (and leaving) wet-bulb temperature.

Fig. 1 Effect of air velocity and water pressure on humidifying efficiency

The performance capabilities of an air washer are usually determined from tests on apparatus using recirculated spray water. It has been found that the value of humidifying efficiency or effectiveness for a given type of washer construction varies with air velocity and water pressure, as shown in Fig. 1.

It is this Task Group's belief that most of this type of information is obtained from sea level tests and is used without regard for the altitude of the application. Furthermore, this Task Group is unaware of any complaints about performance at altitude.

A quick comparison of air washers with other masstransfer equipment suggests that mass velocity, rather than air velocity, is the significant parameter. If it is, then it would be proper to enter Fig. 1 with an equivalent air velocity based on an equal mass velocity. Since the equivalent velocity would be lower than the actual velocity, a higher efficiency would result and this might explain why no complaints have been noted.

The above conclusion can also be reached by noting the effect on efficiency of reducing the density in the following expression and assuming that all other factors are constant:

 $\eta = 1 - e^{-\frac{hS}{cV\delta}}$ where $\eta = humidifying$ efficiency, e = 2.718, h = coefficient of heat transfer (air film) S = interfacial area (between water and air), c = specific heat (humid), V = air velocity, and $\delta = air density.$

It should be observed that while the interfacial area (S) can be considered constant for a given air washer, and the specific heat (c) can be considered independent of altitude, the performance of an air washer at altitude will not equal that at the same air velocity (V) at sea level unless the effects of altitude on the density (δ) and the coefficient of heat transfer (h) are compensating. The effect of altitude on density can be determined from psychrometric charts or tables. The effect of altitude on the coefficient of heat transfer can only be determined by test. It is not too unlikely that the variation of the coefficient of heat transfer will closely parallel the variation of density for a constant velocity. As density decreases, Reynolds1 number decreases and unless the flow regime in the vicinity of the drop is completely turbulent, this will result in an increase in the thickness of the boundary layer, which in turn will impede the transfer of heat. This is another way of saying, that the coefficient of heat transfer will decrease. If, on the other hand, the flow regime is completely turbulent, the coefficient of heat transfer will be more nearly constant and the effect of reduced density will not be counteracted and we should expect improved performance at altitude.

Obviously, most of the above is conjecture. While it is desirable to have experimental confirmation of any hypothesis, it has not yet been shown that the cost of a research program in this case would be justified by anticipated savings which might accrue to more accurate selections.

Fig. 2 Chart for selection of L/G for given set of conditions

COUNTERFLOW TOWERS FOR WATER-COOLING DUTY

Contrasting with the dearth of published information concerning the methods of rating air washers for humidification at altitude, there are numerous, albeit conflicting, statements regarding the rating of cooling towers at altitude. Let us quickly note, however, that there seems to be general agreement regarding the significant increase in driving force or enthalpy potential at high elevations over that at sea level. Differences of opinion do exist regarding the extent to which the decrease in mass air flow offsets the increase in driving force at altitude.

Correspondence from one manufacturer states emphatically that he does not derate evaporative type equipment for the effect of altitude. All equipment is selected as if it were to perform at sea level, i.e., rating systems are based on sea level test data and psychrometric charts. However, he does point out that he has found it necessary to increase the fan horsepower to the sea level value to obtain equal thermal performance for the same size tower. This manufacturer claims performance tests at various altitudes substantiate the correctness of his approach.

Another manufacturer publishes a statement to the effect that tower selections based on sea level data will be slightly conservative in size or horsepower or both, if the installation is for an altitude greater than 3000 ft above sea level. This manufacturer also claims to have a simplified method for converting a required perform-

25

COOLING TOWERS IN HIGH ALTITUDES: What effect does altitude have on cooling ... Page 1 of 1

Content Type: Q&A

Question:

Do you have any information or design guides that deal with derating cooling tower performance and/or efficiency because of high altitude operation?

Answer:

I submitted your question to Rich Harrison, Chairman of the Performance and Technology Committee of the **Cooling Technology Institute (CTI)**. Here is his very excellent response...

CTI has published several papers over the years on the effect of altitude on cooling towers. If you look on the CTI website under the **Bibliography of Technical Papers**, you will see the following three listed under Thermal Performance (copies can be purchased through CTI at \$10.00 plus postage and handling):

- TP62-04 Effect of Altitude on Cooling Tower Rating and Performance by Thomas H. Hamilton
- TP82-13 Effect of Altitude on Cooling Tower Design and Testing by George E. McGee
- TP83-09 Use of CTI Blue Book at Altitude by Robert Fulkerson

Basically there are three effects of altitude:

- 1. The energy-holding content in air at higher altitude is greater than at sea level per pound of dry air. For example, a 78 deg F saturated air (78 Wet Bulb and 78 Dry Bulb) at sea level has 41.586 BTU/lb dry air vs 46.374 BTU/lb dry air at 5000 ft altitude, or +11.5%. This means that the same cooling tower could cool a greater amount of water at altitude at the same temperature conditions PER POUND OF DRY AIR. For example, for the conditions of 95 Inlet Temp to 85 Outlet Temp at 78 Wet Bulb, a counterflow cooling tower with 4 ft of 0.75 inch cross-fluted fill material, the equilibrium Liquid-to-Gas ratio at sea level would be about 1.588, or it will cool 1.588 lbs of water per lb of dry air. At 5000 ft altitude this L/G ratio would increase to 1.873 lb water per lb dry air, a 17.9% increase.
- 2. The air is less dense at higher altitude and therefore it takes more cubic feet of air per lb of dry air. The same 78 deg F saturated air at sea level takes 14.010 ft^3/lb dry air vs 16.953 ft^3/lb dry air at 5000 ft altitude, or +21.0%. In a similar manner the density is reduced from 0.0729 lb mixture/ft^3 to 0.0605 lb mixture/ft^3, or 17% less, thereby reducing the air pressure drop (and fan horsepower) through the tower FOR THE SAME AIR FLOW VOLUME.

3. The electric fan motors have reduced cooling capability at higher altitudes due to the less dense air. This means that at very high altitudes, you may not be able to load the motor to the full nameplate load and full motor temperature rise. However, a compensating factor is that at altitude, the ambient temperature is normally less than at sea level. Large field erected cooling tower customers may limit the fan motor power to 90% for longevity of the motor, so the reduced motor capability may not be an issue.

Now, what is the bottom line of combining these three factors? The first factor is positive and the second factor is negative on performance. The overall effect is positive and generally small, 3-8% at 5000 ft altitude, but will depend on the actual temperature conditions. Most factory-assembled cooling tower manufacturers do not take advantage of this correction for altitudes below about 3000 feet. Field-erected towers are built to order and will normally take full advantage of the performance gain at altitude.

I might also suggest the CTI ToolKit software which is available to \$395 for members and \$450 nonmembers which will allow you to generate psychrometric properties at any altitude and characteristic curve determination at any altitude. Detailed ordering information is available on the CTI website.

Lastly, if your question is prompted by a specific tower, ask the manufacturer for their technical information. Alternatively, if your question is prompted by a potential performance problem, request an independent third-party test by one of the five CTI Thermal Test Agencies.

ID: 2319

Return to Search Results

volume 39-4

providing insights for today's hvac system designer

Engineers Newsletter

Effects of Altitude

on psychrometric calculations and fan selections

For this EN we're pulling from the archives to address a subject that still causes confusion within the industry and continues to be the subject of frequently asked questions. This EN investigates the effects of altitude on psychrometric calculations and fan selections.

"Standard Air"

As altitude increases, the average barometric pressure drops and air density decreases.

"Standard air" has historically been defined by ASHRAE as having a density of 0.075 lb/ft³, which equates to air density at sea level (barometric pressure of 29.92 in. Hg). The 2009 *ASHRAE Handbook of Fundamentals* (page 18.13) states that this condition is represented by either saturated air at 60°F dry bulb or dry air at 69°F dry bulb.

Since the performance of heating, cooling, and air-moving equipment is commonly rated at "standard air" conditions, cataloged performance data cannot be used directly for higher altitude applications. For instance, at a barometric pressure of 24 in. Hg (approximately 6000 ft altitude), cataloged data may be off by as much as 20 to 40 percent.

While areas above 6000 ft are statistically limited, a number of states and cities have barometric pressures in the range of 29 to 27 in. Hg. In this range, cataloged ratings may differ from actual conditions by 3 to 20 percent.

Psychrometric Calculations

The equations used in psychrometric calculations remain the same for all altitudes. However, some of the factors used in these equations are affected by altitude.

The sensible heat gain (Ω_s) equation is often displayed as follows:

 $Q_s = 1.085 \times cfm \times \Delta T$

However, the 1.085 in this equation is not a constant. Rather, it is the product of the density (p) and specific heat (C_p) of the air at "standard air" conditions, and the conversion factor of 60 minutes per hour.

 $Q_{s} = (\rho \times C_{p} \times 60 \text{ min/hr}) \times \text{cfm} \times \Delta T$

The specific heat for 69°F dry air at sea level is 0.241 Btu/lb°F. Therefore, at "standard air" conditions, these properties result in the value 1.085.

0.075 lb/ft³ \times 0.241 Btu/lb°F \times 60 min/hr = 1.085

The latent heat gain (Q_L) equation is often displayed as follows:

 $Q_L = 0.69 \times cfm \times \Delta W$ (gr/lb)

However, the 0.69 in this equation is not a constant. Rather, it is the product of the density and latent heat of vaporization (Δh_{vap}) of the air at "standard air" conditions, and the conversion factors of 60 minutes per hour and 7000 grains/lb.

 $\begin{aligned} & \text{Q}_{\text{L}} = (\rho \times \Delta h_{\text{vap}} \times \text{60 min/hr} \, / \, \text{7000 gr/lb}) \\ & \times \text{cfm} \times \Delta \text{W} \end{aligned}$

The latent heat of vaporization for 69°F dry air at sea level is 1076 Btu/lb. Therefore, at "standard air" conditions, these properties result in the value 0.69.

(0.075 lb/ft^3 \times 1076 Btu/lb \times 60 min/hr) / 7000 gr/lb = 0.69

The total heat gain (Q_T) equation is often displayed as follows:

 $Q_T = 4.5 \times cfm \times \Delta h$

However, the 4.5 in this equation is not a constant. Rather, it is the product of the density of the air at "standard air" conditions and the conversion factor of 60 minutes per hour.

 $Q_{T} = (\rho \times 60 \text{ min/hr}) \times \text{cfm} \times \Delta h$

For "standard air" density, the result is the value 4.5.

 $0.075 \text{ lb/ft}^3 \times 60 \text{ min/hr} = 4.5$

Air at other conditions and other altitudes will cause these factors to change.

Fans

Fans are considered to be constantvolume devices. That is, a given fan will deliver a specific volumetric flow rate (cfm) at a specific fan rotational speed (rpm). The mass of air that the fan moves at a given speed will vary based on the density of the air being moved. Air density also changes the static pressure that the fan will develop and the horsepower needed to drive it.

Fan and air handler manufacturers typically catalog fan performance data at "standard air" conditions. If the airflow requirement for a given

Figure 1. Air density ratios

Air Temperature, °F

application is stated at non-standard conditions, a density correction must be made prior to selecting a fan.

The procedure for selecting a fan at actual altitude (or temperatures) is outlined in the following steps:

 Determine the actual air density and calculate the air density ratio, which is the density at actual conditions divided by density at standard conditions. Figure 1 provides a useful chart for determining the air density ratio based on altitude and air temperature.

Air Density Ratio = Density_{actual} Density_{standard}

2 Divide the design static pressure at actual conditions by the air density ratio determined in Step 1.

SP_{standard} = $\frac{SP_{actual}}{Air Density Ratio}$

- 3 Use the actual design airflow (cfm) and the static pressure corrected for standard conditions (see Step 2) to select the fan from the performance tables/charts and to determine the speed (rpm) and horsepower requirement of the fan at standard conditions.
- 4 The fan speed (rpm) is the same at both actual and standard conditions.

RPM_{actual} = RPM_{standard}

5 Multiply the input power requirement by the air density ratio to determine the actual input power required.

Power_{actual} = Air Density Ratio X Power_{standard}

It is important to note that most pressure-loss charts for other system components (such as ducts, filters, coils, and dampers) are also based on standard air conditions.

Summary

Although the wide-scale use of computer software to select HVAC equipment has made the process of correcting for altitude simpler, a fundamental understanding is still important to prevent mistakes and troubleshoot problems.

By Trane Applications Engineering. You can find this and previous issues of the Engineers Newsletter at www.trane.com/ engineersnewsletter. To comment, e-mail us at comfort@trane.com.

View the latest on-demand courses:

ASHRAE Standard 90.1-2010.

Energy-Saving Strategies for Rooftop VAV Systems.

ASHRAE Standard 62.1: Ventilation Rate Procedure.

LEED 2009 Modeling and Energy Savings.

The courses were developed and are offered free of charge to demonstrate Trane's commitment to sustainable design. LEED Accredited Professionals (APs) and AIA members can participate and earn an average of 1.5 Continuing Education (CE) hours per program.

Visit **www.trane.com/ continuingeducation** to view all current courses and details.

New application manuals now available

Central Geothermal Design and Control. (SYS-APM009-EN, April 2010)

Chilled-Water VAV Systems. (SYS-APM008-EN, August 2009)

Chiller System Design and Control. (SYS-APM001-EN, May 2009)

Visit **www.trane.com/bookstore** to order and view a complete list of resources.

local Trane office.

March 2011 Upgrading Existing Chilled-Water Systems

June 2011 High-Performance VAV Systems

October 2011 Dedicated Outdoor Air Units

Trane, A business of Ingersoll Rand

For more information, contact your local Trane office or e-mail us at comfort@trane.com

Trane believes the facts and suggestions presented here to be accurate. However, final design and application decisions are your responsibility. Trane disclaims any responsibility for actions taken on the material presented.

ENGINEERED PRODUCTS COMPANY

• Since 1898 •

11099 W. 8th Ave. Lakewood, CO 80215-5515 (303) 777-4471 • Fax (303) 777-4476 email engproducts@cs.com_website: engproducts.net

THE BOILER HOUSE JOURNAL NATURAL GAS DATA

Revised 4/3/06

We have compiled the following Natural Gas Data Tables for your use when selecting a gas fired appliance. We obtained the data from the Utility Companies' engineering and administrative offices. We must advise that the BTU values listed are average values and are not constant, as the Utility Company is unable to maintain exact values at the point of delivery. We suggest that you contact the utility company to confirm the BTU value of the gas at your location. It is also important to find out what the delivery pressure will be after the meter.

CITY	STATE	ALT.	BTU/CFH @ALT.	SPECIFIC GRAVITY	UTILITY CO.
Akron	CO	4662	835	.585	K N Energy
Alliance	NE	3959	898	.602	K N Energy
Alamosa	CO	7540	733	.60	Excel Energy
Antonito	CO	7888	764	.60	Excel Energy
Arvada	CO	5337	829	.67	Excel Energy
Aspen	CO	7908	770	.640	Kinder Morgan
Atwood	CO	3990	919	.65	Excel Energy
Ault	CO	7940			Excel Energy
Aurora	CO	5342	829	.67	Excel Energy
Avon	CO	7430	831	.65	Excel Energy
Avondale	CO	7550	854	.67	Excel Energy
Beaver Creek	CO	8300	806	.65	Excel Energy
Bellevue	CO	5120	877	.61	Excel Energy
Bergen Park	CO	7791	760	.67	Excel Energy
Berthoud	CO	5030	879	.61	Excel Energy
Big Horn	CO	8460	743	.67	Excel Energy
Black Hawk	CO	8460	754	.67	Excel Energy
Boone	CO	4500	854	.67	Excel Energy
Boulder	CO	5430	827	.67	Excel Energy
Bow Mar	CO	5500	825	.67	Excel Energy
Breckenridge	CO	9603	713	.67	Excel Energy
Bridge Port	NE	4000	898	.602	K N Energy
Brighton	CO	4982	881	.61	Excel Energy

NATUAL GAS DATA TABLE

CITY	STATE	ALT.	BTU/CFH @ALT.	SPECIFIC GRAVITY	UTILITY CO.
 Broomfield	СО	5420	827	.67	Excel Energy
Brush	CO	4231	957	.67	Excel Energy
Buena Vista	0	7953	800	67	Comfort Gas Co
Buffalo		4645	035	.07	Mont Dakota Utility
Durlington		4162	955	.05	Pooples Cas Co
Duringion		4103	87U 965	.05	Chaverage Light & Dever
DUITIS	VVT	5510	605	.01	Cheyenne Light & Power
Cameo	СО	4820	877	.65	Excel Energy
Campion	CO	5120	877	.61	Excel Energy
Canfield	CO	5015	880	.61	Excel Energy
Canon City	CO	5332	827	.65	Greeley Gas Co.
Capulin	(0)	7810	766	60	Excel Energy
Carnenter	WY	5436	867	61	Chevenne Light & Power
Caspor		5102 5102	020	.01	Northorn Utility
Castle Back		5125	920 770	.05	Deeples Cas Ca
		0202	770	.05	Feoples Gas Co.
Center	0	/645	770	.60	Excel Energy
Central City	0	8496	/42	.6/	Excel Energy
Chadron	NE	3400	920	.602	K N Energy
Chappel	NE	3800	905	.602	K N Energy
Cherry Hills Village	CO	5381	828	.67	Excel Energy
Cheyenne	WY	6100	847	.61	Cheyenne Light & Power
Cheyenne Wells	CO	4296	976	.65	Peoples Gas Co.
Clifton	CO	4710	881	.65	Excel Energy
Climax	CO	11.320	671	.67	Excel Energy
Coal Creek	(0)	5600	755	.67	Excel Energy
Cody Park	0	7400	771	67	Excel Energy
Collbran	0	5087	035	657	Kinder Morgan
Colo Springs	0	6012	907	620	City of Colo, Springs
Columbine Valley	CO CO	CO12	007	.039	City of Colo. Springs
		5280	831	.0/	Excel Energy
Commerce City	00	5150	835	.6/	Excel Energy
Conejos	0	/800	/66	.60	Excel Energy
Conifer	CO	8270	748	.67	Excel Energy
Copper Mountain	CO	9680	711	.67	Excel Energy
Cortez	CO	6198	861	.611	Greeley Gas Co.
Craig	CO	6185	848	.653	Excel Energy
Crawford	NE	3600	913	.602	K N Energy
Crested Butte	CO	8900	729	.609	Excel Energy
Dacana	<u> </u>	E017	060	65	Accoc Nat Cas
		3017 4025	900	.05	ASSOC. Nal. Gas
De Beque		4935	934	.02	Excel Energy
		5183	820	.05	East Colo. Utility
Del Norte	CO	/8/4	/64	.60	Excel Energy
Delta	CO	4961	820	.5963	Kinder Morgan
Denver	CO	5280	831	.67	Excel Energy
Denver Int'l Airport	CO	5431	867	.61	Excel Energy
Denver N.E.	CO	5280	868	.61	Excel Energy

CITY	STATE	ALT.	BTU/CFH @ALT.	SPECIFIC GRAVITY	UTILITY CO.
Dillon	CO	9156	725	.67	Excel Energy
Douglas	WY	4815	873	.601	K N Energy
Dove Creek	CO	6843	840	.611	Greeley Gas Co.
Downieville	СО	8000	755	.67	Excel Énerav
Dumont	CO	7950	756	.67	Excel Energy
Dupont	(0)	5110	836	67	Excel Energy
Durando	0	6512	906	695	Greelev Gas Co
Durungo	00	0512	500	.055	
Eads	CO	4213	903	.625	Greeley Gas Co.
Eagle	CO	6600	830	.65	Kinder Morgan
Eastlake	CO	5270	831	.67	Excel Energy
Eaton	CO	4839	929	.656	Greeley Gas Co.
Eckley	CO	3894	895	.657	K N Energy
Édgewater	СО	5355	829	.67	Excel Energy
Eldora	CO	8700	736	.67	Excel Energy
Eldorado Springs	(0)	5750	817	.67	Excel Energy
Empire	0	8601	739	67	Excel Energy
Englewood	0	5306	830	67	Excel Energy
Frio		5038	870	.07	Excel Energy
Eric Ector Dark	0	7522	805	.01	Excel Energy
LSICS Faik	CO	7040	701	.01	Excel Energy
Evergreen	CO	7040	/81	.07	Excel Energy
Federal Heights	CO	5535	824	.67	Excel Energy
Flagler	СО	4931	840	.65	Peoples Gas Co.
Flemina	СО	4240	890	.657	Peoples Gas Co.
Fort Carson	CO	6012	807	.639	City of Colo. Springs
Florence	CO	5187	832	.65	Greelev Gas Co.
Fort Collins	0	4984	881	.61	Excel Energy
Fort Lupton	0	4914	883	61	Excel Energy
Fort Morgan	0	4321	1000	63	Et Morgan Gas Co
Fracer		8550	740	.05	Evcel Energy
Frodorick	0	1082	060	.07	Kindor Morgan
Fricco	CO	490Z	900 726	.05	Event Energy
FIISCU Front Dongo Airport		9097	720	.07	Excel Energy
		3 4 30 4400	910	.07	
Fruita		4498	887	.05	Excel Energy
Fruitvale	CO	4660	882	.65	Excel Energy
Georgetown	CO	8519	741	.67	Excel Energy
Gering	NE	4000	898	.602	K N Energy
Gillette	WY	4544	980	.65	Mont. Dakota Utility
Glendale	CO	5350	829	.67	Excel Energy
Glenrock	WY	5009	866	.601	K N Energy
Glenwood Springs	СО	5746	804	.650	Kinder Morgan
Golden	CO	5675	820	.67	Excel Energy
Gordon	NE	3500	839	.585	K N Enerav
Granby	СО	7935	757	.67	Excel Energy

CITY	STATE	ALT.	BTU/CFH @ALT.	SPECIFIC GRAVITY	UTILITY
Grand Junction Grand Lake Greybull Greeley Green Valley Ranch Greenwood Village Guadalupe Gun Barrel Green Gunnison	CO CO WY CO CO CO CO CO CO	4586 8437 3788 4663 5410 5422 7900 5192 7703	884 743 920 906 868 827 763 874 751	.65 .67 .655 .656 .61 .67 .60 .61 .609	Excel Energy Excel Energy Wyoming Gas Co. Greeley Gas Co. Excel Energy Excel Energy Excel Energy Excel Energy Excel Energy Excel Energy
Hanna Haxtun Hazeltine Henderson Hideaway Park Holyoke Holly Homelake Hot Sulphur Spgs. Hygiene Hudson Hudson Hugo	WY CO CO CO CO CO CO CO CO CO CO CO CO CO	6777 4028 5080 5020 8800 3746 3397 7620 7670 5090 5024 5094 5094	935 858 837 839 734 866 1010 771 764 878 920 820 780	.65 .585 .61 .67 .585 .736 .60 .67 .61 .664 .65 .65	Northern Gas Co. K N Energy Excel Energy Excel Energy K N Energy Greeley Gas Co. Excel Energy Excel Energy Excel Energy Kinder Morgan Northern Gas Co. Peoples Gas Co.
Idaho Springs Idledale Iliff Indian Hills	CO CO CO CO	7540 6460 3833 6840	767 797 895 786	.67 .67 .657 .67	Excel Energy Excel Energy K N Energy Excel Energy
Johnstown Julesburg	CO CO	4820 3477	886 916	.61 .602	Excel Energy K N Energy
Keystone Kimball Kittredge Kremmling	CO NE CO CO	9200 4800 6810 7364	724 877 787 772	.67 .608 .67 .67	Excel Energy K N Energy Excel Energy Excel Energy
La Jara La Junta Lafayette Lakewood Lamar Lander La Porte Laramie Las Animas	CO CO CO CO WY CO WY CO	7602 4188 5237 5440 3622 5360 5060 7165 3901	771 850 832 826 1003 950 878 820 735	.60 .69 .67 .67 .736 .60 .61 .65 .62	Excel Energy Citizens Utility Co. Excel Energy Excel Energy Greeley Gas Co. Northern Gas Co. Excel Energy Northern Gas Co. Citizens Utility Co.

CITY	STATE	ALT.	BTU/CFH @ ALT.	SPECIFIC GRAVITY	UTILITY CO.
Lawson	CO	8120	752	.67	Excel Energy
Leadville	CO	10,152	700	.67	Excel Energy
Leyden	CO	5650	820	.67	Excel Energy
Limon	CO	5366	840	.67	Peoples Gas Co.
Littleton	CO	5362	829	.67	Excel Energy
Lochbuie	CO	4980	881	.61	Excel Energy
Log Lane Village	0	4330	953	67	Excel Energy
Lonamont	0	4974	881	61	Excel Energy
Lookout Mountain	0	7374	772	67	Excel Energy
	0	5350	879	.07	Excel Energy Excel Energy
Louviers	0	5680	810	.07	Excel Energy
Louviers	0	1082	QQ1	.07	Excel Energy
Luck		490Z	001	.07	K N Eporal
LUSK		5015	003	.002	K IN EITELYY
Lyons	0	5473	809	.01	Excel Energy
Manassa	CO	7683	769	.60	Excel Energy
Manitou Springs	CO	6412	807	.639	City of Colo. Spas.
Mead	CO	5140	876	.61	Excel Energy
Meeker	CO	6242	850	.653	Greelev Gas Co.
Merino	CO	4035	994	.67	Excel Energy
Milliken	00	4760	888	.61	Excel Energy
Minturn	0	7817	820	65	Excel Energy
Monte Vista	0	7663	770	60	Excel Energy
Montezuma	0	10 280	696	.00	Excel Energy
Montrose	0	5704	770	.07	Kinder Morgan
Monumont	0	5757	770	.005	Rinuel Morgan
Morgan Heighte	0	4220	700	.03	Freed Energy
Morrison		4330	955	.07	Excel Energy
Morrison		5800	810	.07	Excel Energy
Mountain view	0	5385	828	.6/	Excel Energy
Mt. Vernon	0	/413	//1	.67	Excel Energy
New Castle	СО	5550	905	.62	Excel Energy
New Castle	WY	4334	880	.62	Mont. Dakota Utility
Nederland	CO	8236	749	.67	Excel Energy
Niwot	CO	5090	828	.61	Excel Energy
Northglenn	СО	5460	826	.67	Excel Energy
Orchard Mesa	CO	4650	882	.65	Excel Energy
Otis	CO	4335	890	.657	K N Fnerav
Ovid	CO	3521	820	.60	K N Energy
Pagosa Springs	\mathbf{CO}	7079	750	65	Citizens Utility Co
Dalicado	\sim	4777	880	.05	Evcal Energy
ralisaut Dooli		T/2/ 2000	000 00E	.05	K N Energy
rdUll Darachute		2070 5005	C40	.00/	N IN EILEIGY
Paracnute		5095	928	.02	
Parker	CO	5870	814	.6/	Excel Energy

CITY	STATE	ALT.	BTU/CFH @ALT.	SPECIFIC GRAVITY	UTILITY CO.
Parshall	CO	7560	767	.67	Excel Energy
Pavillion	WY	5690	860	.65	Northern Gas Co.
Pine	CO	6754	789	.67	Excel Energy
Pine Bluffs	WY	5050	879	.61	Chevenne Light & Power
Pinedale	WY	7175	1550	LP/air	Western Utility
Platteville	CO	4820	901	.656	Greeley Gas Co.
Powell	WY	4365	940	.65	Wyoming Gas Co.
Pueblo	CO	4639	849	.67	Excel Energy
Rangley	CO	5250	960	.65	City of Rangley
Rawlins	WY	6755	835	.65	Northern Gas Co.
Red Cliff	CO	8150	735	.67	Excel Energy
Richfield	CO	7590	772	.60	Excel Energy
Rifle	0	5345	911	62	Excel Energy
Riverton	WY	4946	950	60	Northern Gas Co
Rock Springs		6271	870	.00 60	Mt Fuel Nt Gas
Rocky Ford	$\hat{\mathbf{C}}$	4178	740	.00	Citizens Utility Co
Pomeo		7750	767	.07	Excel Epergy
	CO	0140	707	.00	Excel Energy
Russell Guich	0	9140	725	.07	LXCEI LITEI YY
Saguache	CO	7697	769	.60	Excel Energy
Salida	CO	7036	777	.609	Greeley Gas Co.
Sanford	CO	7560	772	.60	Excel Energy
Saratoga	WY	6786	935	.65	Northern Gas Co.
Sargent	CO	7920	763	.60	Excel Energy
Scottsbluff	NE	4000	898	.602	K N Energy
Sedalia	CO	5860	814	.67	Excel Energy
Severance	CO	4890	884	.61	Excel Energy
Sheridan	CO	5307	830	.67	Excel Energy
Sheridan	WY	3745	860	.65	Mont. Dakota Utility
Shoshoni	WY	4820	940	65	Northern Gas Co
Sidney	NF	4000	898	602	K N Energy
Silt	<u> </u>	5432	908	62	Excel Energy
Silver Plume	0	9118	726	67	Excel Energy
Silverthorne	0	8790	734	67	Excel Energy
Sinclair		6502	840	.07	Northern Cas Co
Showmass Village	\mathcal{C}	0592 8575	751	.05	Kinder Morgan
Showinass village	0	4362	0/3	627	Groolov Cas Co
Stoomboot Spac	CO	6687	272	.027	Greeley Gas Co.
Stealing	CO CO	2025	037	.042	Greeley Gas Co.
Sterling		3935	921	.05	Excel Energy
Stratton		4414 5200	88U	.05	Peoples Gas Co.
Strasburg		5380	840	.05	East Colo. Utility
Superior	CO	5512	824	.6/	Excel Energy
Tabernash	CO	8320	746	.67	Excel Energy
Telluride	CO	8745	696	.595	Kinder Morgan

CITY	STATE	ALT.	BTU/CFH @ALT.	SPECIFIC GRAVITY	UTILITY
Thermopolis	WY	4326	885	.65	Wyoming Gas Co.
Thornton	CO	5400	831	.67	Excel Energy
Timnath	CO	4877	884	.61	Excel Energy
Torrington	WY	4104	895	.602	K N Energy
Trinidad	CO	5746	980	.65	K N Energy
Vail	СО	8150	810	.65	Excel Energy
Vineland	CO	4640	850	.67	Excel Energy
Walden	СО	8099	720	.67	Kinder Morgan
Walsenburg	CO	6220	747	.65	City of Walsenburg
Wah Keeney Park	CO	7600	771	.67	Excel Energy
Weldona	CO	4340	953	.67	Excel Energy
Wellington	CO	5201	874	.61	Kinder Morgan
West Vail	CO	8000	814	.65	Excel Energy
Westminster	CO	5445	831	.67	Excel Energy
Wheat Ridge	CO	5445	826	.67	Excel Energy
Wheatland	WY	4733	872	.858	K N Energy
Widefield	CO	5730	820	.65	Peoples Gas Co.
Wiggins	CO	4540	895	.61	Excel Energy
Windsor	CO	4800	867	.61	Excel Energy
Winter Park	CO	9100	726	.67	Excel Energy
Woodland Park	CO	8465	705	.65	Peoples Gas Co.
Worland	WY	4061	940	.65	Wyoming Gas. Co.
Wray	CO	3516	872	.595	K N Energy
Yuma	СО	4125	890	.657	K N Energy

PLEASE NOTE: We have made every effort possible to ensure the accuracy of the data included, however, Engineered Products Company and <u>*The Boiler House Journal*</u> cannot guarantee total accuracy.